EN ISO 374

Ausgabe 2016

Schutzhandschuhe gegen gefährliche Chemikalien und Mikroorganismen

Teil 1: Enthält unter Anderem die Leistungsanforderungen für chemische Risiken wie

- Permeation (Durchdringung)
- Penetration (Eindringen)
- Degradation (Zersetzung)
- Teil 5: Enthält unter Anderem die Leistungsanforderungen für Risiken durch Mikroorganismen

Gemäß der neuen Norm werden Schutzhandschuhe in 3 Typen klassifiziert, je nach Leistungsniveau und Anzahl der Chemikalien, vor denen sie schützen. In der Tabelle sind das Leistungsniveau und die Anzahl der Chemikalien, die für jeden Typ erforderlich sind, aufgeführt:

Klassi- fizierung	Erforderliches Mindestleistungsniveau	Mindestanzahl der aufgeführten 18 Chemikalien
Тур А	2 (≥ 30 Minuten bis zum Durchbruch)	6
Тур В	2 (≥ 30 Minuten bis zum Durchbruch)	3
Тур С	1 (≥ 10 Minuten bis zum Durchbruch)	1

Kenn- buchstabe	Chemikalie	CAS- Nummer*	Klasse
А	Methanol	67-56-1	Primärer Alkohol
В	Aceton	67-64-1	Keton
С	Acetonitril	75-05-8	Nitrilverbindung
D	Dichloromethan	75-09-2	Chloriertes Paraffin
Ε	Schwefelkohlenstoff	75-15-0	Disulfid mit organischer Verbindung
F	Toluol	108-88-3	Aromatischer Kohlenwasserstoff
G	Diethylamin	109-89-7	Amin
Н	Tetrahydrofuran	109-99-9	Heterocyclen und Ether-Verbindung
I	Ethylacetat	141-78-6	Ester
J	n-Heptan	142-82-5	Gesättigter Kohlenwasserstoff
K	Natriumhydroxid, 40%	1310-73-2	Anorganische Base
L	Schwefelsäure, 96%	7664-93-9	Anorganische Mineralsäure, oxidierend
M	Salpetersäure, 65%	7697-37-2	Anorganische Mineralsäure, oxidierend
N	Essigsäure, 99%	64-19-7	Organische Säure
0	Ammoniumhydroxid, 25%	1336-21-6	Organische Base
Р	Wasserstoffperoxid, 30%	7722-84-1	Peroxid
S	Flusssäure, 40%	7664-39-3	Anorganische Mineralsäure, oxidierend
T	Formaldehyd, 37%	50-00-0	Aldehyd

^{*} Die CAS-Nummer (CAS = Chemical Abstracts Service) ist ein internationaler Bezeichnungsstandard für chemische Stoffe. Für jeden in der CAS-Datenbank registrierten chemischen Stoff existiert eine eindeutige CAS-Nummer.

